I diamanti super profondi, quelli estremamente rari che si formano a profondità da 300 fino a 1000 km all’interno del mantello terrestre, sono vere e proprie capsule inerti capaci di trasportare “frammenti” di terra profonda fino alla superficie terrestre senza quasi alcuna alterazione chimica. L’articolo dal titolo "Extreme redox variations in a superdeep diamond from a subducted slab", che ha come prima firma Fabrizio Nestola dell’Università di Padova con il contributo di Luca Bindi dell’Università di Firenze e pubblicato su «Nature» descrive la composizione di un diamante davvero unico e sensazionale.

Il diamante studiato incorpora particolari inclusioni che testimoniano una sequenza complessa di reazioni chimiche che avvengono su una placca tettonica in subduzione – cioè quella placca che scorre al di sotto di un’altra placca e che può sprofondare verso l’interno del mantello terrestre – al “confine” tra la zona di transizione, tra i 410 e i 660 km di profondità, e il mantello inferiore, settore che si estende da 660 km fino al nucleo terrestre esterno a 2900 km di profondità. La tipologia di inclusioni analizzate come il ritrovamento di forsterite pura, un caso unico, che è un minerale del mantello terrestre con composizione Mg2SiO4 e le reazioni chimiche che sono avvenute all’interno del diamante studiato indicano e confermano la presenza di acqua a grandissime profondità (circa 660 km), in concomitanza a metano (CH4), idrogeno molecolare H2 e la presenza di settori, sempre a queste profondità, costituiti da ferro metallico ritenuto essere presente solo nel nucleo terrestre. Allo stesso tempo, la scoperta conferma empiricamente per la prima volta ciò che era stato solo simulato in geofisica da calcoli molto complessi: le placche tettoniche penetrano nel mantello talvolta seguendo percorsi non lineari.